Structure Types of Ternary Rare Earth—Transition Metal Silicides of the LnM_rSi_{2-r} Type

I. MAYER AND I. FELNER

Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, Israel

Received August 16, 1972

Ternary rare earth silicides of the LnM_xSi_{2-x} system were investigated for the composition range between $LnSi_2$ and LnM_2 . The rare earth elements studied were Pr, Nd, Dy, and Er and the transition metals were Fe, Co, Ni, and Ag. The main structures found were of the ThSi₂ and AlB₂ types characteristic of the disilicides. Above 33.33 at.% transition metal content in most cases Laves phases or ternary phases were observed. The structure changes and the lattice parameters are discussed and are related to the variation in the valence electron concentration and to geometrical factors.

Introduction

Disilicides of the rare earth metals crystallize with the tetragonal $ThSi_2$ and hexagonal AlB_2 type structure (1). In the last few years, a number of works appeared dealing with the ternary LnM_xSi_{2-x} systems related to the disilicides. The systems investigated were those in which 3*d* transition metals, Al, or Ge were substituted in different amounts for Si (2–7), and the structural changes occurred as a result of this substitution were determined.

The results reported in the above studies cover only small portions of the composition ranges in the LnM_xSi_{2-x} system and are related to only a few of the rare earth elements. Therefore it was decided to undertake a systematic study of this ternary system, covering the whole composition range between $LnSi_2$ and LnM_2 , with the representative rare earth elements Pr, Nd, Dy, and Er and with the transition elements Fe, Co, Ni, and monovalent Ag. The aim of this study was to determine the way in which the structural changes occurring when transition metal atoms replace Si in the rare earth disilicides depend on the valence electron concentration and geometrical factors.

Experimental

Samples have been prepared by melting together rare earth metals, silicon, and the transition metals (Fe, Co, Ni, and Ag) all 99.9% pure.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain. The metals were mixed together and heated by an induction furnace at about 1600°C under the protective atmosphere of argon. Alumina crucibles were used as containers. To ensure homogenization of the samples, they were annealed by keeping them in the induction furnace somewhat lower than the heating temperature for 30 minutes. The purity of the samples was checked by the X-ray diffraction method.

Powdered samples were X-ray analyzed by a Phillips Diffractometer using Ni-filtered CuKa radiation, monochromatized with graphite. The cell parameters were calculated by a least-squares program (8) using an average of 15 reflections. The maximum error in the lattice constants is 0.005 Å.

X-Ray intensities were recorded on a strip chart while scanning at 0.25° (2 θ)/minute and measuring the area of the peaks. The structure factors were calculated by a computer program (9).

Results

The $LnNi_xSi_{2-x}$ system has been investigated for Pr, Nd, Dy, and Er. The structure type and the lattice parameters of the compounds at different compositions are listed in Table I. The structural changes observed at the different compositions can be described as follows:

At a Ni content of 12.5 at. %, all the compounds crystallize in the ThSi₂-type tetragonal structure. At a higher Ni content, the AlB₂-type

Ι	
щ	
9	
~	

CRYSTAL DATA OF THE LNNi_xSi_{2-x} Compounds

Ln			Pr			PN			Dy			Er	
nposition	VEC	Structure type	Lattice constants (Å)	c/a	Structure type	Lattice constants (Å)	c/a	Structure type	Lattice constants (Å)	cla	Structure type	Lattice constants (Å)	c/a
N	3.666	ThSi2	a = 4.290 c = 13.760	3.207	GdSi ₂	a = 4.18 b = 4.15 c = 13.56	3.256 (av)	GdSi ₂	a = 4.030 b = 3.931 c = 13.32	3.346 (av)	AlB ₂	a = 3.80 ~ - 4.09	1.08
i _{0.25} Si _{1.75}	3.500	ThSi ₂	a = 4.187 c = 13.846	3.307	ThSi ₂	a = 4.103 c = 13.85	3.376	ThSi ₂	a = 4.000 c = 13.63	3.407	ThSi ₂	a = 4.002 c = 13.59	3.400
0.5Si1.5	3.333	AlB ₂	a = 4.021 c = 4.025	1.057	AlB ₂	a = 4.020 c = 4.207	1.046	AlB2	a = 3.970 c = 4.013	1.011	AlB2	a = 3.960 c = 3.986	1.007
io.75Si1.25	3.166	AlB2	a = 4.050 c = 4.181	1.032	AIB2	<i>a</i> = 4.036 <i>c</i> = 4.156	1.030	AlB ₂	a = 4.000 c = 3.960	066.0	AlB ₂	a = 3.980 c = 3.900	0.980
Si	3.000	ThSi ₂	a = 4.109 c = 13.970	3.400	ThSiz	a = 4.081 c = 13.990	3.428	ThCr ₂ Si ₂ + Dy ₂ O ₃	a = 3.938 c = 9.532	2.420	ThCr ₂ Si ₂ + Er ₂ O ₃	a = 3.930 $c = 9.560 \pm$	2.432
i1.25Si0.75	2.833	Tetragonal + ThSi ₂	a - 7.18 $c = 8.71$	1.213	I	1	ļ	Hexagonal	a = 8.300 c = 6.881	0.829	ThCr ₂ Si ₂ + Er ₂ O ₃	a = 3.929 c = 9.636	2.452
i _{1.5} Sio.5	2.666	Tetragonal	a = 7.18 c = 8.71	1.213	Tetragonal	a = 7.243 c = 8.763	1.210	Hexagonal	a = 8.290 c = 6.895	0.832	ThCr ₂ Si ₂ + Er ₂ O ₃	a = 3.929 c = 9.636	2.452
1.75Si0.25	2.500	MgZn ₂	a = 5.227 c = 7.709	1.475	MgCu ₂	<i>a</i> = 7.284	I	MgCu ₂	<i>a</i> = 7.18	l	MgCu ₂	<i>a</i> = 7.220	1
7	2.333	MgCu ₂	<i>a</i> = 7.284	ł	MgCu ₂	<i>a</i> = 7.270	ļ	MgCu ₂	<i>a</i> = 7.16	ļ	MgCu ₂	<i>a</i> = 7.118	l

RARE EARTH-TRANSITION METAL SILICIDES

Relative Integrated Intensities of ThSi2-Type PrNiSi

h k l	Iobs	Intermittent	Irandom
101	40.0	33.0	27.0
004	25.6	7.5	6.8
103	100	100.0	100.0
112	140	113.0	102.8
105	71.8	71.0	64.9
200	98.4	53.4	48.7
1 1 6/2 1 1	10.3	11.2	10.5
107	36.6	13.7	10.9
213	27.5	33.6	30.4
215	55.0	36.0	31.7
118	38.4	18.0	16.6
220	16.6	10.2	9.4
217	15.6	18.0	16.4
		R = 0.29	R = 0.39

hexagonal structure was obtained with limiting composition $LnNi_{0.75}Si_{1.25}$. The homogeneity range of the AlB_2 -type hexagonal structure is apparently broader than that of the $ThSi_2$ -type structure. At a composition of LnNiSi, the Pr and Nd compounds crystallize in the $ThSi_2$ -type structure, while for the Dy and Er compounds the $ThCr_2Si_2$ -type body-centered tetragonal structure was observed together with small amounts of Dy_2O_3 and Er_2O_3 , owing to an excess of Dy and Er during the formation of $Dy(Er)Ni_2Si_2$.

The compounds with more than 50 at. % Ni $(LnNi_{1.25}Si_{0.75} \text{ and } LnNi_{1.5}Si_{0.5})$ crystallize with

a tetragonal structure in the case of Pr and Nd, and hexagonal structure in the case of Dy. We could not relate these structures to crystal phases known for silicides or other intermetallic compounds. In the composition range of 75–100 at. % Ni the main structure type is of the cubic MgCu₂ phase except for PrNi_{1.75}Si_{0.25}, which crystallizes in the MgZn₂-type structure.

In order to determine the exact position of the Ni and Si atoms in the ThSi₂-type Pr(Nd)NiSi compounds, X-ray intensity measurements were carried out for PrNiSi. The structure factors were calculated for two cases: in one case Ni and Si atoms were randomly distributed between the Si sites of the ThSi₂ structure and in the second case Ni and Si atoms were intermittently distributed between these two positions. Results of the intensity calculations are given in Table II. It can be concluded from this table that agreement between observed intensities and calculated intensities is better when Ni and Si are intermittently located forming Ni-Si-Ni-Si- chains, the interchain bond always being between Ni and Si atoms.

To study the replacement of Si by different transition metals, the NdM_xSi_{2-x} system was investigated for Fe, Co, and Ag. The results obtained for the $NdFe(Co)_xSi_{2-x}$ system are summarized in Table III. In contrast to the results with Ni, the AlB₂ structure in the compounds with Fe and Co was obtained only at a critical composition of $NdFe(Co)_{0.4}Si_{1.6}$. In the case of the Co compound, the stability range of the structure was somewhat broader, but at the composition of $NdCo_{0.67}Si_{1.33}$, the ThCr₂Si₂

TABLE III

CRYSTAL DATA OF THE NdFe(Co)_xSi_{2-x} System

Μ	Fe Co		o			
Composition	Structure type	a (Å)	c (Å)	Structure type	a (Å)	c (Å)
NdM _{0.25} Si _{1.75}	ThSiz	4.115	13.90		4.168	13.74
NdM _{0.4} Si _{1.6}	AlB ₂	4.031	4.192	AlB ₂	4.029	4.211
NdM _{0.67} Si _{1.33}		_	_	$AlB_2 + ThCr_2Si_2$	4.039	4.199
NdM _{0.75} Si _{1.25}			_	$AlB_2 + ThCr_2Si_2$	4.054	4.169
NdMSi	TiNiSi	$\frac{a}{11.18}\frac{b}{6.89}$	5.32	PbFCl ThCr ₂ Si ₂	4.035 3.954	6.895 9.911
NdM1.25-1.5Si0.75-0.5			<u> </u>			
NdM1.75Si0.25			_ _	MgCu ₂	7.428	—
NdM ₂				MgCu ₂	7.283	

x	Structure type	VEC	a (Å)	c (Å)	<i>c</i> / <i>a</i>
0.00	GdSi₂	3.666	4.18, 4.15	13.56	3.256
0.20	ThSiz	3.466	4.166	14.10	3.385
0.33	ThSi ₂	3.333	4.172	14.22	3.408
0.50	ThSi ₂	3.166	4.175	14.31	3.428
0.66	ThSi ₂	3.000	4.184	14.50	3.465
0.75	ThSi ₂	2.916	4.188	14.70	3.510
1.00	AlB,	2.666	4.244	4.138	0.975
1.25	AlB ₂	2.416	4.295	4.135	0.963

TABLE IV

CRYSTAL DATA FOR THE NdAg_Si2-x SYSTEM

phase appeared together with the AlB₂ structure. In the case of NdFeSi, an orthorhombic structure of the TiNiSi type was obtained with some FeSi impurities. The same structure was obtained also for PrFeSi, with lattice constants a = 11.13, b = 7.04, and c = 5.30 Å. In the case of NdCoSi, two types of tetragonal phases were observed, the PbFCl and the ThCr₂Si₂-type structure. NdCo₂ was found to crystallize with the MgCu₂ structure. NdFe₂ could not be prepared.

In Table IV, results obtained in the NdAg_xSi_{2-x} system are listed. The stability range of the ThSi₂-type structure is much broader than in the case of Fe, Co, and Ni. The AlB₂ structure was observed only at a composition of NdAgSi. In the case of the ThSi₂-type compounds the lattice constants and the c/a value increase with the Ag content. The composition range of the ThSi₂- and AlB₂-type structures was also determined in the case of two smaller rare earth elements, Dy and Er. In these cases, the AlB₂ structure appears in the composition range Dy(Er)Ag_{0.67}Si_{1.33}-Dy(Er)AgSi.

Discussion

The results summarized in this work deal with the rare earth metal-transition metal-silicon system, in which the rare earth metal content has a constant value of 33.33 at. %. Up to a transition metal content of 33.33 at. %, the ThSi₂- or AlB₂-type structures characteristic of the binary rare earth silicides were observed. At higher transition metal content, a larger variety of structures characteristic of ternary phases or of the Laves phases appears. Another general conclusion concerning these compounds is that the Ni ternary systems are richest in distinct phases; the number of compounds decreases toward Co and Fe. Similar results were obtained by Bodak et al. (5) in the case of the Ce-Ni-Si system.

The main difference between binary silicides and those studied in this work is because of the replacement of Si by transition metals of different radius, and the changes in the valence electron concentration (VEC) when transition metals are substituted for the tetravalent Si. The structural changes will be, therefore, explained below in terms of the above two factors.

In the ThSi₂-type compounds, the VEC decreases when transition metals are inserted and at the same time c/a increases. c/a as a function of VEC is given in Fig. 1 for the NdAg_xSi_{2-x} system. The shortest Si-Si bond is defined by

$$\sqrt{a^2/4 + (0.072c)^2}$$

and is present in the Si chains of the structure. The atomic radius of Si (1.32 Å) is bigger than that of Ni (1.24 Å) (10) and, therefore, insertion of Ni in these chains will lower the parameter a. Similar observations were made when Ge was substituted for Si in rare earth disilicides (7). The value of c, on the other hand, depends on the rather long Si-Si interchain bonds (Si-Si = 0.178c). These bonds become weaker when Ni is substituted for Si and the VEC decreases. The weaker interchain bonds will be longer and consequently c increases. The relatively large interchain bonds are not affected by the size of Ni but by its VEC; this also is consistent with that found in the Ln-Ge-Si system, where insertion of isoelectronic Ge for Si does not influence c.

Two extreme cases for the composition range of stability of the AlB₂ structure were found:

FIG. 1. c/a versus VEC in the ThSi₂-type NdAg_xSi_{2-x} system.

 $LnCu_{1,5}Si_{0,5}$ (11) and the critical composition of LnFe_{0.4}Si_{1.6}. The critical composition mentioned corresponds to a VEC value of 3.4, critical to obtain the AlB₂ structure, which, as a rule, appears always at lower VEC than the ThSi₂-type structure (12). This composition is also required to have at least one transition metal in each of the Si hexagons characteristic of the AlB₂-type structure. Generally, the homogeneity range of the structure increases in the order of Fe < Co < Ni < Cu. The transition metal atoms replace the silicon in their sites (2), and, therefore, the radius of the Si atoms calculated in the ternary compounds gives the mean value of these radii. In the $NdM_{0.4}Si_{1.6}$ system, these radii were found to be 1.117, 1.122, 1.131, and 1.133 Å for M = Fe, Co, Ni, and Cu,¹ respectively. Accordingly, the size of the transition metals in these compounds will be Fe < Co < Ni < Cu. This means that the size of the transition metals and the homogeneity range of the AlB₂ structure increases in the same order, indicating that substitution of Si by one of the above atoms will be most favorable with atoms similar in size to Si.

Increase in the Ni content of the $LnNi_xSi_{2-x}$ compounds with the AlB₂ structure caused an increase in the parameter *a* and a decrease in c/a. The value of *a* depends on the length of the Si-Si bond (Si-Si is, by a good approximation, $a/\sqrt{3}$). The insertion of Ni in the AlB₂-type structure affects the bond in a different way than in the ThSi₂-type structure, where the Si-Si

¹ Calculated from the data for NdCu_{0.5}Si_{1.5} (11).

bonds are relatively longer; namely, it will weaken these bonds because of the decrease of the VEC. The bonds will become longer and a will increase. As a result of the longer Si–Si bonds, the graphitic layers become broader and this enables the rare earth metals to penetrate deeper into these layers. c, which is a measure of the distance between the metallic layers, will then decrease. At compositions above 37.5 at.% transition metal content, the AlB₂ structure disappears. At this composition, at least two Si atoms are replaced by the smaller transition metal atoms, and the silicon hexagons become distorted to such an extent that the structure is destroyed and the ThSi₂-type structure reappears (NdNiSi).

The transition $ThSi_2 \rightarrow AlB_2$ in the case of the $LnAg_xSi_{2-x}$ system occurs at higher Ag content than in the cases of Fe, Co, Ni, and Cu. The reason for this seems to be that the insertion of the relatively big Ag atoms reduces the effective space in the Si hexagons, which then can no longer accommodate the rare earth atoms. $ErAg_{0.67}Si_{1.33}$ is hexagonal, because at this composition two Ag atoms have already replaced Si atoms in the hexagons, and these expand owing to their increasing Ag character. In the NdAg_xSi_{2-x} system, the AlB₂ structure was obtained only at a composition of NdAgSi because more Si has to be replaced by Ag in order to make room for the larger Nd atoms.

References

- 1. I. P. MAYER, E. BANKS, AND B. POST, J. Phys. Chem. 66, 693 (1962).
- I. MAYER AND M. TASSA, J. Less Common Metals 19, 173 (1969).
- 3. A. RAMAN AND H. STEINFINK, Inorg. Chem. 6, 1789 (1967).
- 4. O. I. BODAK AND E. I. GLADYSHEVSKII, Izvest. Akad. Nauk. SSSR, Neorg. Mat. 5, 2060 (1969).
- 5. O. I. BODAK AND E. I. GLADYSHEVSKII, Izvest. Akad. Nauk. SSSR, Neorg. Mat. 6, 1066 (1970).
- 6. O. I. BODAK AND E. I. GLADYSHEVSKII, Izvest. Akad. Nauk. SSSR, Neorg. Mat. 6, 1186 (1970).
- 7. I. MAYER AND Y. ESHDAT, Inorg. Chem. 7, 1904 (1965).
- 8. D. K. SMITH, UCRL No. 7196, a Fortran program for calculating X-ray powder diffraction patterns.
- 9. M. H. MUELLER, L. HEATON, AND K. I. MILLER, Acta Cryst. 13, 828 (1960).
- Handbook of Chemistry and Physics, The Chem. Rubber Co., Cleveland, Ohio, U.S.A., 49th Edition, p. F155 (1968-69).
- W. RIEGER AND E. PARTHE, Monatsh. f. Chem. 100, 439 (1969).
- 12. A. BROWN, Acta Cryst. 14, 860 (1961).